

Pankaj Hari, MD

Professor, Pediatric Nephrology AIIMS, Delhi

Overview

How new guidelines are different

- Methodology
- Diagnosis & therapy of UTI
- Imaging after UTI
- Recurrent UTI, bladder bowel dysfunction
- Vesicoureteric reflux, renal scarring
 - Surgery/endoscopic treatment
 - Antibiotics prophylaxis, duration
 - Non antimicrobial intervention
- VUR and ESKD

ISPN guideline on UTI & VUR

Revised Statement on Management of Urinary Tract Infections

INDIAN SOCIETY OF PEDIATRIC NEPHROLOGY Indian Pediatrics 2011

Excluded UTI in complex abnormalities (obstructive uropathy, neurogenic bladder)

PROCESS

Appoint Work Groups, Evidence Review Team (ERT)

Discuss process, Refine topics/questions

Assign topics to systematic review or narrative review

Perform new or update existing

Create evidence profile

Rate **quality of evidence** for each outcome and overall

GRADE and formulate recommendation

Adapted IOM systematic review standards

Clinical practice points *vs.* recommendations

Clinical practice points

- No systematic review conducted
- Insufficient evidence
- Evidence inconclusive
- Guidance not actionable
- Guidance as table/figures/algorithm

Recommendations

- Systematic review conducted
- Ample evidence available
- Evidence shows clear preference of one action over other
- Guidance is actionable
- Statements supported with
 - Quality of evidence
 - Balance of benefit and harm
 - Values & preferences
 - Feasibility, equity, acceptability
 - Resource

Adapted from KDIGO Guidelines on glomerular diseases 2020

Method of urine collection

PRECONTINENT CHILDREN :

Clinical practice point: suggest using clean-catch in toilet-trained

- Non-toiled trained stable children: clean-catch should be attempted initially, if unsuccessful catheterization or suprapubic aspiration (SPA) can be used
- Sick infants: catheterization or SPA preferred

Urine can be stored at 4°C for up to 24 h

Screening test for UTI

TEST	SENSITIVITY %	SPECIFICITY %
Leukocyte esterase positive	83	78
Nitrite test positive	53	98
Leukocyte esterase/ Nitrite positive	93	72
Microscopy, WBC	73	81
Microscopy, Bacteria	81	83
LE, Nitrite, Microscopy positive	99.8	70

AAP Clinical Practice Guidelines, Pediatrics 2016

Microscopy for bacteria and Gram stain has excellent accuracy; microscopy for WBC can be replaced by leukocyte esterase; **Dipstick negative in 10%; cannot replace urine culture** *Williams, Lancet 2010*

Recommendation:

- Suggest using urine dipstick (leukocyte esterase + nitrite combination) as a screening test
- When feasible urine microscopy, (for bacteriuria and pyuria) in a freshly voided sample, can be used as an alternative for screening of UTI (2⊕⊕⊕○)

Fig.1 Approach to Diagnosis of UTI

Risk factors: Bladder-bowel dysfunction, primary vesicoureteric reflux, previous history of UTI

UTI: diagnosis

Clinical practice point:

- Suggest diagnosis of UTI be based on the significant growth of a single bacterial species in presence of symptoms
- Growth of single uropathogenic bacteria ≥10³, ≥10⁴, and ≥10⁴⁻⁵ (CFU/ml) by suprapubic aspiration, catheterization, and clean-catch, are highly suggestive of UTI

Asymptomatic bacteriuria

- *Clinical practice point:* Suggest **NOT** to perform routine culture or repeat urine culture after treatment if there is clinical response
- Not to treat asymptomatic bacteriuria

UTI: treatment guidelines

• **Recommendation:** Use oral antibiotics for acute pyelonephritis except

i) infants aged <1 month ii) children with bacteremia/sepsis iii) children unable to ingest $(1 \oplus \oplus \bigcirc)$

Suggest IV for initial 3-4 days or till defervescence, followed by oral

- *Clinical practice point:* Suggest initial intravenous antibiotic to treat acute pyelonephritis in children aged 1-3 month
- Recommendation: suggest using 3rd generation cephalosporins or amoxicillin-clavulanic acid as empirical antibiotic in febrile UTI (2⊕○○○)
- Recommendation: short course (3-5 days) of oral antibiotic for lower UTI (1⊕⊕⊕○)
- Clinical practice point: 7-10 days of antibiotic treatment for acute pyelonephritis in children aged >6 month

Fig.2 Treatment of Urinary Tract Infection

BBD & Recurrent UTI

Bladder bowel dysfunction (BBD): combined bladder and bowel dysfunction in the absence of neurological abnormality (*ICCS, 2017*)

Independent predictor of UTI; delays resolution of VUR; therapy results in downgrading of VUR

Bladder

- Urgency
 Wetting of pants
 Holding maneuvers
- Hesitancy
- Frequency

Bowel

Constipation

- <3 stools/wk</p>
- Hard stools blocking toilet
- Painful defecation

Clinical practice point

Suggest all children with UTI should be evaluated for BBD

Prophylaxis should be given in recurrent febrile UTI and BBD irrespective of presence or absence of VUR

Imaging after UTI

Imaging in selected children after first UTI

Findings suggestive of VUR

- Renal hypoplasia (B/L or U/L)
- Abnormal echogenicity
- Hydronephrosis
- Ureteric dilatation
- Uroepithelial thickening
- Bladder abnormality

Perform after 4-6 weeks; during UTI if

– urosepsis, non response, renal dysfunction

Clinical practice point

Ultrasound scan of the urinary tract should be performed after an episode of UTI in children

Dimercaptosuccinic acid (DMSA) scan

Early DMSA (within 2 wk)

Recommendation:

Do not perform acute-phase DMSA scan in children with febrile UTI ($2\oplus\bigcirc\bigcirc\bigcirc$)

Late DMSA (4-6 mo after acute infection)

Clinical practice point

suggest performing a late-phase DMSA scan to assess kidney scarring in children with recurrent UTI or high-grade VUR

More relevant, since it detects damage!

Micturating cystourethrography

- Gold standard for VUR; provides anatomy of urinary tract
- Invasive & radiation

Clinical practice point

Suggest performing MCU in children with one of the following: (a) children <2 yr with non-*E.coli UTI* (b) abnormal ultrasound scan (c) recurrent UTI

Fig.3 Approach to imaging after UTI

Recurrent UTI: 2 episodes of febrile UTI

BBD; bladder bowel dysfunction, DMSA; Dimercaptosuccinic acid VUR; vesicoureteric reflux

Is prophylaxis useful in normal urinary tracts?

Recurrence of UTI

Recommend against using prophylaxis for prevention of UTI in children with normal urinary tract $(1 \oplus \oplus \oplus \bigcirc)$ *ISPN guidelines, 2021*

Primary VUR: how therapy changed

Antibiotic versus surgery/endoscopic injection

Meta-analysis: recurrence of symptomatic UTI similar after surgery & antibiotic prophylaxis; less febrile UTI

No difference in renal scarring at 5, 10 years Surgery does not prevent progression to ESRD % change of GFR similar at 5 and 10 yr; majority of reflux improve

Endoscopic treatment

- Success 60-95%; improves with second injection, depends on grade of reflux, expertise
- Recurrence 11-26% over 3-12 mo, ureteral obstruction 0.6%
- NO benefit over prophylaxis

Cochrane database of systematic reviews, 2019

Prophylaxis in high grade VUR is marginally beneficial

Prophylaxis for high grade (III-IV) VUR

	ABF	ABP placebo/ no therapy		егару	Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Garin 2006	5	18	1	19	2.6%	5.28 [0.68, 40.91]	2006	
Montini 2008	6	26	6	14	9.5%	0.54 [0.21, 1.36]	2008	
Pennesi 2008	17	39	15	40	17.4%	1.16 [0.68, 1.99]	2008	
Roussey-Kesler 2008	8	24	12	30	13.1%	0.83 [0.41, 1.70]	2008	
Craig (PRIVENT) 2009	7	65	11	64	10.2%	0.63 [0.26, 1.51]	2009	
Brandström 2009	10	69	25	68	14.5%	0.39 [0.21, 0.76]	2009	_
Espino 2012	3	9	7	12	8.1%	0.57 [0.20, 1.62]	2012	
Hoberman (RIVUR) 2014	26	143	38	137	20.2%	0.66 [0.42, 1.02]	2014	
Hari 2015	6	37	2	31	4.4%	2.51 [0.55, 11.58]	2015	
Total (95% CI)		430		415	100.0%	0.75 [0.53, 1.06]		◆
Total events	88		117					
Heterogeneity: Tau ² = 0.10;	Chi ^z = 13	.52, df :	= 8 (P = 0.10);					
Test for overall effect: Z = 1.62 (P = 0.10)								Favours [ABP] Favours [control]

Renal scarring not prevented by prophylaxis in VUR

	ABP)	placebo/ no t	o/ no therapy		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Smellie 1978	0	0	0	0		Not estimable	1978	
Garin 2006	7	100	6	118	18.9%	1.38 [0.48, 3.96]	2006	
Montini 2008	2	187	2	108	6.2%	0.58 [0.08, 4.04]	2008	
Roussey-Kesler 2008	0	0	0	0		Not estimable	2008	
Pennesi 2008	0	50	0	50		Not estimable	2008	
Craig (PRIVENT) 2009	5	68	7	83	17.6%	0.87 [0.29, 2.62]	2009	
Brandström 2009	0	68	9	68	3.0%	0.05 [0.00, 0.89]	2009	
Hoberman (RIVUR) 2014	18	220	19	227	43.2%	0.98 [0.53, 1.81]	2014	
Hari 2015	4	37	3	43	11.1%	1.55 [0.37, 6.48]	2015	
Total (95% CI)		730		697	100.0%	0.95 [0.58, 1.57]		•
Total events	36		46					
Heterogeneity: Tau ² = 0.05;	Chi ² = 5.6	i8, df =	5 (P = 0.34); I ²	= 12%				
Test for overall effect: Z = 0.	19 (P = 0.)	85)						Favours [experimental] Favours [control]

Why has renal scarring remain unchanged ?

Should host's inflammatory response be diminished

Corticosteroids

Meta-analysis: Renal scarring rate on late DMSA in steroid versus placebo									
	Steroid plus an	tibiotic	otic Placebo plus antibiotic			Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl	
Huang 2011	6	18	39	65	44.4%	0.56 [0.28, 1.10]	2011		
Ghaffari 2019	2	23	4	29	8.0%	0.63 [0.13, 3.14]	2019		
Shaikh 2020	12	123	22	131	47.6%	0.58 [0.30, 1.12]	2020		
Total (95% CI)		164		225	100.0%	0.57 [0.36, 0.90]		•	
Total events	20		65						
Heterogeneity: Tau ² = 0.00; Chi ² = 0.02, df = 2 (P = 0.99); l ² = 0%									
Test for overall effect: Z = 2.40 (P = 0.02)								Favours [Steroid] Favours [Placet	20)0]

Insufficient evidence to recommend its use ISPN guidelines, 2022

Prophylaxis & antimicrobial resistance

Odds of multidrug resistance 6.4 times more on prophylaxis; 1 MDR infection in every 21 VUR treated

Pediatrics 2018

	ABF)	placebo/ no the	erapy	Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl		
Roussey-Kesler 2008	0	0	0	0		Not estimable	2008			
Pennesi 2008	41	43	0	35	4.1%	67.91 [4.33, 1065.94]	2008			
Brandström 2009	7	8	9	24	27.8%	2.33 [1.31, 4.16]	2009			
Craig (PRIVENT) 2009	24	36	13	55	29.1%	2.82 [1.66, 4.78]	2009	-		
Hoberman (RIVUR) 2014	26	38	17	69	30.7%	2.78 [1.74, 4.42]	2014			
Hari 2015	7	12	1	5	8.3%	2.92 [0.47, 17.95]	2015			
Total (95% CI)		137		188	100.0%	3.04 [1.68, 5.51]		◆		
Total events	105		40							
Heterogeneity: Tau ² = 0.24;	Chi ^z =11	.33, df :	= 4 (P = 0.02); I ² :	= 65%						
Test for overall effect: Z = 3.6	0002)						Favours [Control] Favours [ABP]			

Recommendations

Suggest prophylaxis for prevention of febrile UTI only in children with high-grade primary VUR. ($2 \oplus \oplus \bigcirc \bigcirc$)

We suggest using co-trimoxazole or nitrofurantoin as the first-line antibiotic for prophylaxis in children older than 6 months. $(2 \oplus \oplus \bigcirc)$

Clinical practice point

- Consider using prophylaxis in low-grade VUR in infants with febrile UTI
- Suggest discontinuation of prophylaxis in older than 2 years if: i) toilet trained, ii) absence of BBD, iii) no febrile UTI in last 1 yr

Cranberry for prevention of UTI

Large polymeric compound (pro-anthocyanidin) inhibits bacterial adherence

Children with recurrent UTI (4 studies) (RR 0.39, 95% CI 0.25 to 0.61), one study in VUR

Not better than antibiotic prophylaxis

Quantity of active ingredient (36-72 mg/d), Availability

Recommendation

Suggest using cranberry products for the prevention of UTI in children with recurrent UTI and normal urinary tract. $(2 \oplus \oplus \bigcirc \bigcirc)$

Circumcision and recurrent UTI

No. needed to treat to prevent 1 UTI Normal: 111 High grade VUR: 4

Recommendation

Suggest circumcision should be offered for prevention of UTI only in children at risk of recurrence $(2\oplus\oplus\oplus\bigcirc)$

	Circum	ncised	Uncircur	ncised		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Randomised tria	ls						
Guïcuïk 2013	0	0	0	0		Not estimable	
Navir 2001	Ō	35	3	35	1.2%	0.14 [0.01, 2.67]	
Subtotal (95% CI)		35		35	1.2%	0.14 [0.01, 2.67]	
Total events	0		3				
Heterogeneity: Not app	plicable						
Test for overall effect: 2	Z = 1.30	(P = 0.19)					
1.1.2 Cohort studies							
Alsawvid 2010	5	74	62	137	5.0%	0.15 (0.06, 0.36)	
Brada 2015	5	95	35	166	4.9%	0.25 (0.10, 0.62)	
Ellison 2018	35	5769	96	5351	6.7%	0.34 [0.23, 0.50]	
Kwak 2004	6	27	18	50	5.3%	0.62 [0.28, 1.37]	_ _
Schoen 2000	22	9668	132	5225	6.5%	0.09 [0.06, 0.14]	
Simforoosh 2010	0	2000	20	1000	1.2%	0.01 (0.00, 0.20)	←
To 1998	83	29217	247	29217	7.0%	0.34 [0.26, 0.43]	+
Wiswell 1987	151	173663	459	46112	7.2%	0.09 [0.07, 0.10]	+
Wiswell 1993	112	80279	384	27319	7.1%	0.10 [0.08, 0.12]	+
Subtotal (95% CI)		300792		114577	50.9%	0.17 [0.10, 0.29]	•
Total events	419		1453				-
Heterogeneity: Tau ² =	0.48: Ch	i ^z = 125.32	2. df = 8 (F	< 0.0000	1); ² = 949	6	
Test for overall effect: 2	Z = 6.73 ((P < 0.000	01)		<i></i>		
1.1.3 Case-control stu	idies						
Craig 1996	2	10	142	937	2.4%		
Crain 1990	1	43	16	037	2.4%	0.24 [0.00, 0.34]	
Dubrovosky 2014	4	93	76	200	1.6%	0.14 [0.02, 0.55]	
Ghaemi 2007	2	105	16	1/18	3.2%	0.13[0.07, 0.31]	
Herndon 1000	7	37	10	140	5.2%	0.10 [0.04, 0.73]	
Herron 1090	'n	57	36	60	1 3 %	0.02 (0.00, 0.75)	←
Vachani 1090	1	42	16	00	2.104	0.02 [0.00, 0.20]	
Kashani 1303 Vim 1006	0	40	0	70	1 204	0.14 [0.02, 0.33]	
Newman 2002	15	672	41	107	6.1%	0.21 [0.01, 3.40]	_ _
Ruchton 1992	2	37	21	10	2 204	0.13[0.07, 0.22]	
Shaw 1998	6	497	6	75	4 296	0.15 (0.05, 0.36)	
Snach 1992	18	- 64	8	14	6.0%	0.13 [0.03, 0.40]	
Zorc 2005	6	262	62	291	5.2%	0.43 [0.21, 0.36]	
Subtotal (95% CI)		1864	02	2255	48.0%	0.18 [0.12, 0.29]	◆
Total events	64		458				
Heterogeneity: Tau ² =	0.26; Ch	i ^z = 23.33,	df = 12 (F	' = 0.03); I	²= 49%		
Test for overall effect: 2	Z = 7.61	(P < 0.000	01)				
Total (95% CI)		302691		116867	100.0%	0.18 [0.13, 0.25]	•
Total events	483		1914				
Heterogeneity: Tau ² =	0.42; Ch	i ² = 151.16	6, df = 22 (P < 0.000	01); I ² = 85	5%	
Test for overall effect 2	Z = 9.87 ((P < 0.000	01)	-			0.005 0.1 1 10 200
Test for subgroup diffe	erences:	Chi ≅ = 0.0	5 df= 2 (B	P = 0.97)	I² = 0%		Favours circumcised Favours uncircumcised

VUR: treatment guidelines

Recommendation

- Suggest prophylaxis should be the first line of management in high grade VUR (2⊕⊕⊕○)
- Suggest surgical reimplantation be considered in high grade VUR with recurrent breakthrough febrile UTI on prophylaxis (2⊕⊕⊕○)

Clinical practice point:

- Suggest open reimplantation be preferred over endoscopic treatment
- In high-grade VUR, surgical intervention may be an alternative for parenteral hesitancy to use antibiotics
- No consensus on the type of surgical (open/robotic/laproscopic)

Follow up of VUR

Clinical Practice Points

VUR need periodic follow up till considered clinically insignificant; reflux nephropathy need long term follow-up

Suggest

- Screening siblings (aged less than 3 years) of the children with primary VUR with an ultrasound scan
- Renal USG to monitor renal growth in high-grade reflux & those with scarred kidney
- DMSA be repeated during follow up, only in recurrent febrile UTI
- In high-grade reflux, repeat MCU be performed only if surgical intervention is planned
- DRCG may be done for documenting for resolution of reflux at 4-8 yr of age, in high-grade reflux

Fig.4 Treatment of primary VUR

Recurrent UTI:2 episodes of febrile UTI

ABP; antibiotic prophylaxis, BBD; bladder-bowel dysfunction

VUR: risk of ESKD

Renal scarring in VUR and ESKD

- ANZ dialysis transplant registry from 1971-1998
- age specific incidence of ESRD attributable to reflux

Key Points

New guidelines have followed rigorous methodology

- Post UTI imaging is selective, less aggressive
- Emphasis on BBD; associated with recurrence
- Surgery as good as prophylaxis for VUR; indications limited
- Prophylaxis
 - Recurrent UTI, BBD, high grades of VUR; risk of antimicrobial resistance

Non-antibiotic interventions should be explored

Acknowledgements

Group coordinators

A Bagga M Kanitkar A Iyengar M Pandey Sudha E P Pais

Members

J Sharma, K Mishra, S Raut R Sinha, I Agarwal, A Ohri AS Vasudev, S Uthup, S Sethi A Krishan, M Bajpai S Banerjee, M Mantan, A Saha A Mehta, S Kalra N Krishnamurthy, B Panchal

Advisors

R N Srivastava BR Nammalwar K Mehta K Phadke U Ali

Evidence Review Team

R Thergaonkar A Sinha J Meena P Khandelwal

